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Abstract 

Intentional or unintentional spiraling maneuvers 
on the part of a tactical ballistic missile target can 
make it particularly difficult for a pursuing missile to 
hit. The paper first reviews why it is difficult to hit a 
spiraling target with proportional navigation 
guidance. It is then shown that by using a special 
purpose linear Kaiman filter that is specifically tuned 
for a spiral maneuver in conjunction with an advanced 
guidance law it is possible to dramatically improve 
system performance over that of a proportional 
navigation guidance system. However, in order for 
the necessary filtering and guidance to work properly 
the targets spiraling frequency must be known. If the 
spiraling frequency is unknown other methods must 
be used. The paper investigates two schemes for 
deriving the spiraling frequency of the target. The 
first scheme involves using a bank of Kaiman filters, 
each of which is tuned to a different spiraling 
frequency. Various schemes for identifying which 
filter in the filter bank is tuned to the actual target 
frequency are investigated. The second method for 
deriving the target frequency involves using a single 
extended Kaiman filter that explicitly estimates the 
target spiraling frequency. It is shown that such an 
extended Kaiman filter when used in conjunction with 
an advanced guidance law can dramatically improve 
system performance. 

Background 

During the 1991 Gulf War hundreds of millions 
of TV viewers could see tactical ballistic missiles 
glow  in  the night-time skies as they decelerated 
through the atmosphere towards their civilian targets. 
In many cases TV viewers could also see the ballistic 
missiles spiral or corkscrew and experience complete 
structural failure as they appeared to explode before 

1 2 reaching the ground. '   The purpose of this paper is 
to show how these phenomenon also present unique 
challenges for missiles attempting to intercept these 
highly erratic targets. 

An unintentional configurational asymmetry (i.e., 
slight fixed fin angles resulting from manufacturing 
inaccuracies) will cause a tactical ballistic missile to 
fly with a small trim incidence known as the non- 

rolling trim. The presence of roll causes the tactical 
ballistic missile to perform a pure conical pitching 
and yawing motion at the roll frequency. The 
amplitude of the circular motion is known as the 
rolling trim and the motion itself is known as lunar 
motion. The rolling trim increases in magnitude as 
the rolling velocity increases. When the roll rate 
approximates the tactical ballistic missile natural 
pitch   frequency  it   may   exhibit   large   resonant 

amplification. ' In other words, the resultant 
unintentional fin angles can cause substantial 
spiraling in altitude regimes which are important for 
endoatmospheric intercept engagements. 

Miss Distance For Proportional Navigation 
Guidance   System 

An endoatmospheric interceptor guidance system 
consists of a seeker, noise filter and flight control 
system. Usually a minimum of five time constants 
(one for the seeker, one for the noise filter and three 
for the flight control system) are required to 
realistically express the interceptor guidance system 
transfer function. If accurate information on guidance 
system dynamics is lacking, it is often useful to 
choose a canonic guidance system form so that 
preliminary design and evaluation can take place. The 
binomial representation (i.e., all equal time constants) 
of the guidance system is the simplest possible since 
only one parameter, the guidance system time 
constant, provides all the necessary information. In 
the limit, as the order of the binomial transfer 
function approaches infinity, the guidance system 
will act as a pure delay. Typically the miss distances 
resulting from the binomial guidance system 
assumption will be conservative in the sense that it 
may yield slightly larger miss distances then will 
other guidance system transfer functions of the same 
order. The fifth-order binomial missile homing loop 
is shown in block diagram form in Fig. 1. 

Approved for Public Release; 
Distribution is Unlimited. 
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Figure 1 Fifth-order binomial guidance system 

Figure 2 shows how the steady-state normalized 
peak miss distance due to a weave maneuver varies 
with the normalized target weave frequency for the 

fifth-order binomial   guidance  system. '"      It   is 
interesting to note the steady-state peak miss distance 
is  maximum   when  the  normalized  target  weave 
frequency is approximately unity.   Superimposed on 
Fig. 2 is the zero guidance miss distance or peak 

o 
displacement n^/cOj   caused by the weaving target. 

Surprisingly, we can see that for the fifth-order 
guidance system, proportional navigation only yields 
a smaller miss than turning off the guidance system 
(i.e., N'=0) when the normalized weave frequency is 
less than .7 (i.e., C0jT<.7).   In other words, for 

normalized weave frequencies greater than 
.7, the weaving target nullifies the 
effectiveness of a proportional navigation 
guidance   system! 

Proportional Navigation Not Effective 

Figure 2 Steady-state peak miss due to weave 
maneuver for a fifth-order binomial guidance system 

In order to illustrate the importance of the design 
curve of Fig. 2, let us consider a numerical example. 
Suppose we have a 6 g weaving target with spiral 
frequency of 1.5 r/s. Let us assume that the missile 
guidance system employs proportional navigation 
with an effective navigation ratio of 3. The time 
constant of the missile guidance system is .5 s. 
Therefore the normalized weave frequency is given by 

coTT= 1.5*.5 = .75 

With an abscissa of .75 and for N'=3 the ordinate of 
the design curve of Fig .2 can be seen to be 62 or 

Peak Miss = 62*6*.5*.5 = 93 Ft 
Obviously this large miss distance is not acceptable. 
If the weave frequency changes to 3 r/s the new 
normalized weave frequency is given by 

o/T = 3*.5 = 1.5 
With an abscissa of 1.5 and for N'=3 the ordinate of 
the design curve of Fig.2 can be seen to be 37 or 

Peak Miss = 37*6*.5*.5 = 56 Ft 
Although the new miss distance is somewhat smaller 
than before it is still probably unacceptable. Now 
that we know a spiraling target can cause large miss 
distances, let us see if performance can be improved 
by using new filtering and guidance techniques. 

Linear     Kaiman     Filter 
Frequency is Known 

Where     Weave 

In order to design a Kaiman filter to estimate the 
states of a spiraling target we must first express the 
target maneuver in some statistical fashion. If we 
assume that the maneuver is sinusoidal in shape and 
that the starting time is uniformly distributed over the 
flight time we get the model of Fig. 3. In this 
homing system model we measure noisy relative 
position y* and are attempting to estimate relative 
position, relative velocity, target acceleration and 
target jerk. This model assumes that the achieved 
missile acceleration n^ is known.   It can be shown 

mathematically that the shaping filter equivalent of a 
target maneuver with sinusoidal amplitude but 
random starting time (where the starting time is 
uniformly distributed over the flight time) is white 
noise through the shaping network of Fig. 3. The 
spectral density of this statistically equivalent white 
noise process is given by 

O, n//tF 

where n^ is the peak of the sinusoidal maneuver and 

tp the flight time.    If the co block in Fig.  3 is 

eliminated from the input path, it can be shown that 
the preceding spectral density gets multiplied by the 
square of co. 

Q-J 
Figure 3 Homing loop model for linear Kaiman filter 

development 

We can express the model of Fig. 3 in state space 
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It is important to note that the preceding equation 
is a linear representation of the guidance system if the 
target weave frequency is either known in advance or 
can be measured separately. Since the systems 
dynamics matrix F is time invariant the fundamental 
matrix <J> can be found according to 

Ok = £"![( si -F)"1]^ 

After some computation the discrete form of the 
fundamental matrix turns out to be 

O. 

1 T 
s 

1 - COS X x - sin x 

co2 co3 

o 1 sinx 1 -cosx 

CO 
2 

CO 

0 0 cosx 
sin x 

CO 

0 0 - co sinx cosx 

where 
x = coTc 

and Ts is the sampling time  (i.e.,  time between 

measurements) and co is the frequency of the assumed 
weave maneuver. Again, it is important to note that 
the weave frequency is not estimated by this particular 
Kaiman filter but is simply additional information 
required for filter operation. The measurement 
equation can also be expressed in discrete form as 

where the variance of u^, known as R^, is given by 

n • 
The four-state linear Kaiman filter for the model of 

Fig. 3 can now be expressed in matrix form as 

1 -cosx     x-sinx 

^ - [ 1 0 0 0 

CD 

sinx 

CD 

COSX 

-CD sinx 
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ID 
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sinx 
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A case was run in which there was 100 \xr of range 
independent measurement noise on the line of sight 
angle. We can see from Figs. 4 and 5 that after a 
brief transient period the filter's estimates of the 
target acceleration and jerk are excellent. Of course 
this linear filter knows the actual weave frequency of 
the target. 
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Figure 4 If frequency is known linear Kaiman filter is 
able to track sinusoidal target acceleration 
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Figure 5 If frequency is known linear Kaiman filter is 
able to track sinusoidal target jerk 

Advanced Guidance Techniques 

Traditional guidance laws are a form of 
proportional navigation PN in which the acceleration 
command is proportional to the measured line-of- 
sight rate. With this guidance law the effective 
navigation ratio N' is a designer chosen constant 
which is usually in the range of 3 to 5. 
Mathematically, proportional navigation can also be 
thought of as a guidance law in which the acceleration 
command is proportional to the zero effort miss and 
inversely proportional to the square of the time to go 

until intercept or 

nc=^(y + ytgo) = N'v^ 
igo 

The zero effort miss can be thought of as a 
prediction of how much the missile would miss the 
target by if the target continued to perform as it had 
done in the past and the missile issued no further 
acceleration commands (zero effort). We can see from 
the preceding equation that the zero effort miss term 
(quantity in parenthesis) in proportional navigation 
assumes that the target is not maneuvering. This 
does not mean that proportional navigation can not 
hit a maneuvering target, it just means that this 
guidance law is not optimal in the sense that it 
requires the least acceleration when the target is 

maneuvering. 
The weave guidance law, which is optimal in the 

sense that it requires the least acceleration against 
spiral maneuvers, still issues guidance commands 
proportional to the zero effort miss and inversely 
proportional to the square of time to go until 
intercept. However the zero effort miss is modified to 
account for the fact that the target is spiraling and the 

new guidance law can be shown to be6'7'"'" 

■   y+yt 
1 L_ 

cot   -sin cot 
go go 

go *] 
N'   11 - cos tot 
  go 

t2 —2— go L      m 

cot   -sinmt 
go go 

]' 
where the effective navigation ratio turns out to be 
three. From an implementation point of view, 
assuming that the target weave frequency can be 
estimated off-line and the time to go until intercept is 
measured, the weave guidance law consists of three 
terms: one proportional to the line of sight rate, 
another term proportional to the target acceleration 
and a third term proportional to target jerk. 

Figure 2 has already demonstrated that dynamics 
within the guidance system will cause miss distance. 
With endoatmospheric interceptors, the flight control 
system dynamics constitute the bulk of the overall 
guidance system time constant. If it is known that 
the target maneuver is sinusoidal in nature the 
preceding weave guidance law can be modified to 
compensate for the known dynamics of the interceptor 
flight control system. The compensated weave 
guidance law is very similar to weave guidance and 
for a single time constant guidance system can be 

expressed as 

Weave    t 
go 

go 

1 - COS CO t . 
go 

o)t   -sincot 
go go 

yT-nT2(eX + x-1) 

where x is given by 

_   go 

with t„0 being the time to go until intercept and T 

being defined as the approximate time constant of the 
flight control system. The effective navigation ratio 
in the compensated weave guidance law is now time- 
varying and is given by 

N'= 

2     -X 
6x (e  -1 +x) 

3 2 -X       -2X 
2x   +3 + 6x-6x - 12xe   -3e 
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0.10 

Proportional navigation and the compensated weave 
guidance law were evaluated for a single time constant 
guidance system in which the time constant of the 
flight control system was .3 sec. The weave maneuver 
had an amplitude of 5 g with a weave frequency of 1.5 
r/s. The line-of-sight angle was corrupted by 100 |xr 
of range independent noise. Figure 6 shows that 
proportional navigation can yield rms miss distances 
in excess of 15 ft while the compensated weave 
guidance yields rms miss distances that are near zero 
(i.e., hit-to-kill). Thus we can see that compensated 
weave guidance can dramatically reduce the miss 
distance when the linear Kaiman filter knows the target 
weave frequency perfectly. 

30-, •■■ ■ 
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Figure 6 Performance improvements are significant 
with compensated weave guidance law and linear 

Kaiman filter 

Trying to Identify Weave Frequency 

Since the target weave frequency is usually not 
known in advance experiments were conducted with the 
linear Kaiman filter to see if information was available 
within the filter to determine if it was using the wrong 
frequency. If the filter, using self diagnosis, could 
identify that the frequency was wrong then a bank of 
filters could be used, each one tuned to a different 
frequency. The filter that identified itself as having the 
correct frequency would be the one chosen. Usually 
important information is available in the filter 
residual. In addition, we know from the Riccati 
equations how the filter should behave theoretically. 
Figure 7 displays the residual when there is only 1 LIT 
of measurement noise and the actual target weave 
frequency is 2 r/s. In this case the Kaiman filter weave 
frequency is matched to the actual weave frequency and 
is also 2 r/s. We can see from Fig. 7 that the single 
run results appear to lie within the theoretical bounds 
approximately 68% of the time which says theory and 
simulation appear to be in agreement. In addition, the 
single flight results indicate that the residual appears to 
be totally random. 

-0.10 

Figure 7 Residual lies within theoretical bounds when 
filter is matched to real world 

Unfortunately, we can see from Fig. 8 that the 
measured residual also appears to be within the 
theoretical bounds when the Kaiman filter estimate of 
the weave frequency is half of what it should be (i.e., 
1 r/s rather than 2 r/s). However, we can also see 
from Fig. 8 that the measured residual is not as 
random as the residual of Fig. 7. Therefore it appears 
that if we are somehow able to detect that the residual 
is not random, we might be able to detect that the 
filter frequency is not matched to the real world. 

0.10 -en , „-j : ; ■■;  
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Figure 8 Amplitude of residual when filter weave 
frequency estimate is low does not appear to be random 

Unfortunately we can see from Fig. 9 that when 
the Kaiman filter estimate of the target weave 
frequency is twice what it should be (i.e., 4 r/s rather 
than 2 r/s) the residual not only lies within the 
theoretical bounds but also appears to be random. 
Thus, based on these "eyeball" results it appears that 
unfiltered residual information, by itself, does not offer 
sufficient information for determining if the Kaiman 
filter weave frequency is mismatched to the real world. 
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Figure 9 Amplitude of residual when weave frequency 
estimate is high 

Filtering  the   Residual 

A bandpass filter tuned to a frequency (0o will attempt to 
pass all information at that frequency and attenuate all other 
frequencies. If the linear Kaiman filter is matched to the target 
weave frequency the residual should be random which means that 
all frequencies are present. If we place a bandpass filter tuned to 
the Kaiman filter weave frequency (and hence to the target weave 
frequency) on the residual, the resultant filtered residual should 
be very small. On the other hand, if the filter is mismatched to 
the real world, the residual will not be totally random and the 
bandpass filter should pass some information. This means that 
the filtered residual of a mismatched Kaiman filter should be 
larger than the filtered residual of a matched filter. Figure 10 
presents a conceptual block diagram for filtering the Kaiman 
filter's residual. 

Bandpass Filter I        Output 

BPF    KF 1     ' 
t L Residual 

Line-of-Sight Angle 
Linear 
Kaiman 

Filter 

Relative Position 

Relative Velocity 

Target Acceleration 
Range 

Target Jerk 

T 
Frequency 

KF 

Figure 10 Filtering residual to see if filter is mismatched 
to real world 

filtered residual is small and approaches zero after 
approximately 4 sec. On the other hand, we can see 
from Fig. 11 that when both the Kaiman and bandpass 
filter estimates are low (i.e., 1 r/s rather than 2 r/s) the 
filtered residual is nearly an order of magnitude higher 
than it was in the matched case and does not go to 
zero. Instead, the filtered residual oscillates. Finally, 
Fig. 13, shows that when the Kaiman and bandpass 
filter estimates are high (4 r/s rather than 2 r/s), the 
filtered residual is only somewhat larger than it was in 
the matched case (i.e., Fig. 11). However, in the 
unmatched case the filtered residual does not go to 
zero. Thus it appears that if the filtered residual goes 
to zero, our Kaiman filter frequency must be matched 
to the real world. This result is important if we plan 
to use a bank of Kaiman filters, each one tuned to a 
different frequency. The filtered residual which goes to 
zero might indicate which filter is the correct one to 
use. 
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Figure 11 Filtered residual is small and approaches 
zero when weave frequency estimate is correct 

(1 |ar of noise) 
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Figure 12 Filtered residual is much larger when weave 
frequency estimate is low and does not go to zero (1 |jr 

of noise) 

Cases were run with a bandpass filter on the 
Kaiman filter's residual in which there was only 1 \u 
of measurement noise. We can see from Fig. 11 that 
when the Kaiman filter and bandpass filter are both 
matched to the actual target weave frequency that the 
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Figure 13 Filtered residual is slightly larger when 
weave frequency estimate is high but does not go to 

zero (1 fir of noise) 

The previous three figures displayed filtered 
residual results for the case in which the there was 
only 1 \ix of measurement noise. If the measurement 
noise is two orders of magnitude larger (i.e., 100 |ar of 
measurement noise) then the results can be different. 
Figure 14 still shows that the residual is small 
(although larger than the case in which there was only 
1 |xr of measurement noise) and goes to zero when 
boüi filters are matched to the target weave frequency. 
However, it takes longer to go to zero than the 1 fir 
noise case (i.e., 8 sec to get to zero rather than 4 sec). 
In addition, Fig. 15 still shows that the filtered 
residual is much larger and does not go to zero when 
both filters frequency estimate are on the low side 
(i.e., 1 r/s rather than 2 r/s). However, Fig. 16 
indicates that when both filter's frequency estimate is 
on the high side the filtered residual is only slightly 
larger than that of the matched case. However the 
filtered residual does not go to zero in this case. These 
results indicate that it is more difficult to use the 
filtered residual as an identification tool when the 
measurement noise is large. Thus it seems we have to 
explore other observables within the Kaiman filter for 
possible identification purposes. 
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11 11 I I I I I 11 11 11 I I I 11 11 11 I III I I I I I I I1 11 I [ t I I I I I I II p 

0 2 4 6 8 10 
Time (Sec) 

Figure 14 Filtered residual is small when weave 
frequency estimate is correct (100 |ar of noise) 
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Figure 15 Filtered residual is larger when weave 
frequency estimate is low 

(100 |jx of noise) 
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Figure 16 Filtered residual is only slightly larger when 
weave frequency estimate is high 

(100 |JT of noise) 

Investigating  Acceleration  Estimate 

The Kaiman filter estimates target acceleration. 
Although the filter will do a better job if it is tuned 
in frequency to the actual target acceleration, it can 
still estimate the frequency when the filter is 
mismatched. Figure 17 presents a scheme in which 
we will simply look at the target acceleration 
estimate to see if we can determine the weave 
frequency of the target. 

Line-of-Sight Angle 
Linear 
Kaiman 

Filter 

Relative Position 
to- 

Relative Velocity 

Target Acceleration 
Range 

Target Jerk 

T 
Frequency 

KF 

Figure 17 Is there information in acceleration 
estimate? 
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Figures 18 through 20 indicate that when the 
measurement noise is low all filters (i.e., matched 
and unmatched are able to estimate the weaving 
motion of the target. We can see that in all cases the 
period of the weaving target acceleration estimate was 
approximately pi which means that the target weave 
frequency is 2 r/s. This estimate is always correct 
even though the Kaiman filter is sometimes not 
tuned correcüy. 

-<* ~*i 1111111111111111111 i 111111111111111111111111111111 ~ 
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Time (Sec) 

Figure 18 Filter estimates acceleration when 
frequency estimate is correct (1 |ar of noise) 
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Figure 19 Filter also estimates acceleration correctly 
when frequency estimate is low (1 \xr of noise) 
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Figure 20 Filter also estimates acceleration correctly 
when frequency estimate is high (1 \xr of noise) 

If all filter frequencies yield the correct target 
acceleration estimate, we can then place a bandpass 

filter on the target acceleration estimate as shown in 
Fig. 21. If the bandpass filter frequency is matched to 
the target weave frequency than the entire estimate 
should be passed. However, if the bandpass filter is 
not tuned to the target weave frequency then the filter 
output will be attenuated. Thus if we have a bank of 
filters, the one whose filtered target acceleration 
estimate is largest is the one with the correct 
frequency estimate. 

„inear 
Kaiman 

Filter 

Relative Position 

Relative Velocity 
Bandpass Filter 

(B        = 0> 
BPF    KF 

Target Acceleration        ^ 
Range 

Target Jerk 
 ► 

F1 
Frequency 

Output 

Figure 21 Does putting bandpass fillter on 
acceleration estimate help? 

We can see from Figs. 22 through 24 that the 
Kaiman filter whose filtered frequency estimate is 
matched to the actual target frequency is indeed 
largest. However the amplitude of the matched case 
is not dramatically higher than that of the unmatched 
case and in this case there is only 1 fxr of 
measurement noise. 
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Figure 22 Filtered acceleration estimate when frequency 
estimate is correct 

(1 for of noise) 
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Figure 23 Filtered acceleration estimate is lower when 
frequency estimate is low (1 |xr of noise) 
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Figure 24 Filtered acceleration estimate is also lower 
when frequency estimate is high 

(1 |ir of noise) 

However, Figs. 25 through 27 show that when 
the measurement noise is increased by two orders of 
magnitude to 100 |xr the results are not as clear. 
Figures 25 and 26 are near identical results which 
indicate that it would be very difficult with a bank of 
filters to determine which one was tuned to the correct 
frequency using the filtered frequency as an 
observable. 
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Figure 25 Filtered acceleration estimate when frequency 
estimate is correct (100 |jr of noise) 
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Figure 27 Filtered acceleration estimate is lower when 
frequency estimate is high (100 |ar of noise) 

Extended     Kaiman     Filter 
Frequency is Unknown 

Where    Weave 
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We have just seen that it is not obvious how to 
determine the target weave frequency by using a bank 
of filters. Therefore if a priori information 
concerning the target weave frequency is not 
available, another possibility is to estimate the target 
weave frequency. In this case, because some states 
are functions of the target weave frequency, the 
equations become nonlinear and an extended Kaiman 
filter is required. The state equations upon which the 
extended Kaiman filter is based are given by10 

y = y 
y = yT - nL 

y =y 

y =-oo 
T 

co = u 
3 

The fourth differential equation of the preceding set of 
equations indicates that the target acceleration is 
sinusoidal. Since we are assuming constant target 
weave frequency, the derivative of the weave frequency 
must be zero. By setting the derivative of the weave 
frequency to white noise we will give the Kaiman 
filter more bandwidth. A wider bandwidth Kaiman 
filter will be more robust because it will be able to 
respond more quickly to changes in the target 
trajectory. From the preceding set of nonlinear 
state equations the systems dynamics matrix turns out 
tobe 

Figure 26 Filtered acceleration estimate is only 
slightly lower when frequency estimate is low 

(100 |ar of noise) 
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where the partial derivatives are evaluated at the 
current estimates. Taking the partial derivatives in 
this example can be done by inspection and the 
resultant systems dynamics matrix is given by 

3f(x) 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

0 0 
-2 

-w 0 -2wyT 

0 0 0 0 0 

3x 

In this example the exact fundamental matrix will 
be difficult, if not impossible, to find. If we assume 
that the elements of the systems dynamics matrix are 
approximately constant between sampling instants 
then by substituting Tg for t we can use a two term 

Taylor   series    approximation    for    the    discrete 
fundamental matrix yielding 

$k = I + FTs = 

1 Ts 0 0 

0 1 Ts 0 

0 0 1 Ts 

0 0 -aTt 1 

0 0 0 0 

0 

0 

0 

-2<oyTTs 

1 

The continuous process noise matrix can be found 
from the original state space equation to be 

Q = E(wwT) = E [0  0 0 0 us] 

0 0 o o o" 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 oos_ 

and the discrete process noise matrix can be found 
from the continuous process noise matrix according 
to 

f Jo 

Qk=     <fr(T)Q<r(T)dt 

the In   this   problem   we   are   assuming    that 
measurement is of the first state plus noise or 

y* = yk + vk 

Therefore the measurement matrix can be obtained 
from the preceding equation by inspection as 

H=[ 1  0 0 0 0] 

In this   example  the  discrete measurement noise 
matrix is a scalar and is given by 

Rk = E(vkv£) = 4 

We now have enough information to solve the matrix 
Ricatti equations for the Kaiman gains. 

In this example the projected states in the actual 
extended Kaiman filtering equations do not have to 
use the approximation for the fundamental matrix. 
Instead the state projections, indicated by an over bar, 
can be obtained by numerically integrating the 
nonlinear differential equations over the sampling 
interval. Therefore the extended Kaiman filtering 
equations can then be written as 

yk = yk + Kik(yk - yk) 

yk = yk + K2k(yk - yk) 

yTk = yTk + K3k(yk - yk) 

yT=T + K4(yk-yk) 

cok = cok_i + K5k(xk - xk) 

The equations for the extended Kaiman filter were 
programmed. Although the actual weave frequency in 
this example is 1.5 r/s, the filter's initial estimate of 
the frequency was misinitialized to -3 r/s to reflect the 
fact that tie target weave frequency is really 
unknown. We can see from Figs. 28 and 29 that the 
extended Kaiman filter provides excellent estimates 
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of the target acceleration and weave frequency when 
the measurement noise is 100 |J,r. However, by 
comparing Figs. 28 and 4 we can see that the 
extended Kaiman filters estimates of target 
acceleration are not quite as good as the linear filter 
which knew the target weave frequency precisely. 

I | I I II  |  I  I I I | I I M  | I  I I  I  | I  I I I | I I I I  |  I  I  I  I | I I I I | I I I  I | 

0 2 4 6 8 10 

Time (Sec) 

Figure 28 Extended Kaiman filter is able to estimate 
target acceleration 

_.     2- z:Z:::i.Ä::ta 

Estimate 

| M I I | I I I I | I I I I | I M I | I I I I | I I I I [ I I I I | I I 1 I | I I II | I I I I | 

0 2 4 6 8 10 
Time (Sec) 

Figure 29 Extended Kaiman filter is able to estimate 
target frequency 

Miss   Distance   Comparison 

A conceptual block diagram of the homing loop 
to be used for system performance evaluation appears 
in Fig. 30. The Kaiman filter and guidance portions 
of the homing loop are in this figure. The two 
disturbances considered in the model of Fig. 7 are 
target maneuver and range independent measurement 
noise. We can see from the block diagram that a 
relative acceleration is formed by subtracting missile 
acceleration, n^, from target acceleration.  After two 

integrations a relative position,y, is obtained. The 
relative position at the end of the flight is the miss 
distance [i.e. Miss=y(tp)].  A division of the relative 

position by the range from missile to target yields the 
geometrical line-of-sight angle X. The line-of-sight 
angle is sampled every Tg seconds and contaminated 

by measurement noise as shown in the block 
diagram. The Kaiman filter processes the noisy 
discrete angular measurements, using the achieved 
missile acceleration (assumed to be known perfecfly), 
to  form the required state estimates.  These state 

estimates are processed by the guidance law to form 
an acceleration guidance command, nc.   In some of 

the experiments we will conduct the acceleration 
command will be limited to reflect both structural and 
aerodynamic constraints on the missile. In this 
conceptual block diagram the flight control system 
dynamics have been approximated by a single time 
constant system (i.e., first-order differential equation). 
The achieved missile acceleration, n^, is the output 

of the flight control system and is used by both the 
Kaiman filter and guidance law. The achieved missile 
acceleration also completes the feedback in the 
missile homing loop. 

Figure 30 - Conceptual homing loop for guidance law 
analysis 

The weave target maneuver always begins at the 
initiation of the flight. However, since the flight 
time is a parameter which varies between .2 sec and 
10 sec in steps of .2 sec, we can be sure that the 
effect of the weaving target maneuver on each flight 
is different. The range independent noise, which is 
considered to be uncorrelated, enters the guidance 
system every .01 seconds (i.e., every Ts sec). 

Twenty-five runs were made for each of the fifty 
flight times considered in order to calculate the rms 
miss as a function of flight time. In the experiments 
of this section we are comparing the rms miss 
distance performance of two different guidance system 
configurations. The first is a proportional navigation 
guidance system that uses a three-state linear 
polynomial Kaiman filter to estimate relative 
position, velocity and target acceleration. The second 
guidance system configuration uses a five-state 
extended Kaiman filter to estimate relative position, 
relative velocity, target acceleration, target jerk and 
target weave frequency. 

Figure 31 shows that for the case in which there 
is 100 nr of measurement noise the five-state 
extended Kaiman filter yields superior miss distance 
performance to that of a proportional navigation 
guidance system. However in the region in which the 
flight time is approximately 6 sec the performance of 
both guidance systems is approximately the same. 
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Figure 31 Extended Kalmaii filter yields superior 
performance to a proportional navigation guidance 

system 

Figure 32 shows then when the measurement 
noise is reduced an order of magnitude to 10 jar the 
performance of the extended Kaiman filter guidance 
system improves dramatically. We can see that now 
the performance of the extended Kaiman filter 
guidance system is always superior to that of the 
proportional navigation guidance system. Thus we 
can see that the measurement noise must somehow be 
reduced for us to utilize the target frequency estimate 
in improving the guidance. 

EKF 
■ Weave Guidance 

10 uR Noise 
T=.3 S, LIM=30 Q 

>T|T i rt 

4 6 8 10 
Flight Time (Sec) 

Figure 32 Performance of extended Kaiman filter 
improves when there is less measurement noise 
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Summary 

This paper presents different methods for 
improving the performance of a missile guidance 
system against spiraling targets. Several ad hoc 
schemes were explored for identifying the target weave 
frequency so that a linear Kaiman filter and advanced 
guidance law could be used. None of these schemes 
yielded sufficiently good results when the measurement 
noise was large so that schemes involving banks of 
filters were abandoned. A more promising approach 
involved the use of an extended Kaiman filter. The 
filter appeared to estimate the target weave frequency to 
sufficient accuracy so that there were dramatic guidance 
improvements. Superior miss distance performance 
could even be obtained when the measurement noise 
was large. 
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